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A methodology for deriving a pressure–strain correlation model with variable coef-
ficients is developed. The methodology is based on two important premises: (i) the
extreme states of turbulence – the rapid distortion and equilibrium limits – are more
amenable to mathematically rigorous modelling because of significant simplifications
not possible at other states; and (ii) the models of the extreme states collectively
contain all of the relevant physics so that models for any intermediate state can be
obtained by suitable interpolation. A pressure–strain model of the standard form
is considered and the coefficients are determined from linear analysis in the rapid
distortion limit and from a fixed point analysis in the equilibrium limit. The model
coefficients, which depend on the mean deformation and turbulence state, vary from
flow to flow in a manner consistent with Navier–Stokes physics.

The exact causal relationship between the model coefficients and the model’s equilib-
rium behaviour is established by fixed point analysis performed using representation
theory. Then, the equilibrium values of the model coefficients are chosen to yield the
observed equilibrium behaviour. The values of the model coefficients in the rapid dis-
tortion limit are determined by enforcing consistency with the Crow constraint. The
new variable-coefficient model reduces to the traditional constant-coefficient model in
strain-dominated turbulent flows near equilibrium. The model performance in bench-
mark turbulent flows, in which the traditional models have been calibrated extensively,
is preserved intact. The new model is significantly different from the traditional one
in mean vorticity-dominated and non-equilibrium turbulence. These two important
classes of flows, in which traditional models fail, are successfully captured by the new
model.

1. Introduction
The linear pressure–strain correlation model, of the form popularized by Launder,

Reece & Rodi (1975) (LRR), continues to be the popular choice for turbulence calcu-
lations at the second-moment closure level. The longevity of this model is due equally
to its success in a variety of important benchmark flows as it is to its simplicity. Bench-
mark flows have typically been important engineering flows such as boundary layers,
plane jets, mixing layers and equilibrium states of homogeneous strain-dominated
turbulence such as plane shear, plane strain and axisymmetric expansion/contraction.
Over the last several years there have been important improvements (e.g. Speziale,
Sarkar & Gatski 1991 (SSG); Ristorcelli, Lumley & Abid 1995) resulting in better
predictions over a wider range of flows, especially rotating flows. However, it has been
recently demonstrated by Blaisdell & Shariff (1996) (see also Kassinos & Reynolds
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1994) that these models generally perform very poorly in an important class of
vorticity-dominated flows called the elliptic streamline flows – these are homogeneous
flows with constant mean strain and rotation rates. The flow is named after the elliptic
shape of the mean streamlines when the magnitude of strain is lower than that of
rotation rate or vorticity. The model computations are even qualitatively inconsistent
with linear stability theory and direct numerical simulation (DNS) data for this class
of flows. A second class of flows in which the standard pressure–strain correlation
models are inadequate is non-equilibrium turbulent flows. These two classes of flows in
which the models fail or perform poorly are encountered in many important engineer-
ing applications. Vorticity-dominated flows include many aeronautical flows such as
trailing vortex, flap-edge vortex and leading-edge vortex flows. Highly-strained flows,
such as flows with shock–turbulence interactions, are examples of non-equilibrium
flows. Clearly, there is a need for turbulence models that can compute these flows
with a reasonable degree of accuracy and confidence.

The failure of the traditional pressure-correlation models in these flows is generally
presumed to be a natural consequence of the simplicity of the model form and
the modelling assumptions. In turbulent flows dominated by rotation, Kassinos &
Reynolds (1994) find that additional tensors are needed to accurately describe the
state of turbulence. Their analysis results in a more complex model formulation
based on the structure-function tensor. Van Slooten & Pope (1997) have derived a
Langevin-particle equivalent of the structure-function model. These more advanced
models perform better than the standard Reynolds stress closure models for elliptic
flows at the expense of added computational effort. Due to their inherent complexity
and lack of validation over a wide range of practical flows, these advanced models
are not yet useful design tools.

Modelling premise and objective. The premise of this paper is that the traditional
pressure–strain correlation model form is quite adequate: the poor performance in
complex (elliptic and non-equilibrium) flows may be due more to the sub-optimal
choice of model coefficients than to a fundamental flaw in the modelling methodology.
In fact, the traditional form of the pressure–strain model has a rigorous mathematical
justification (Speziale et al. 1991) in high-Reynolds-number equilibrium turbulence
with strong locality and negligible history effects. Under these conditions, the model
coefficients could be scalar functions of the invariants of the strain rate, rotation rate
and Reynolds stress anisotropy. With notable exceptions (e.g. Ristorcelli et al. 1995),
the pressure–strain correlation models in the literature typically assign constant values
to the model coefficients. Although these models perform well in calibration flows,
they are much less accurate in flows where the imposed strain and rotation rates
differ from the calibration conditions. Since most of the calibration is based on
strain-dominated flows, it should come as no surprise that these models predict the
vorticity-dominated elliptic flows poorly. To capture the behaviour of complex flows,
the model coefficients must be functions of the imposed deformation rate and the
state of turbulence.

In this paper, we initiate the development of a new pressure–strain correlation model
with ‘optimal’ variable coefficients. These model coefficients change, in accordance
with Navier–Stokes physics, from flow to flow in a manner that highlights the
appropriate physics. The proposed model yields excellent agreement with data for a
variety of complex flows and reduces to the well-tested traditional model in standard
benchmark cases.

The analysis leading to the development of the new pressure–strain correlation
model requires the specification of the dissipation rate. In keeping with the theme of
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this paper, we use a model dissipation equation of the time-tested standard form. Our
analysis can also be used to develop a variable-coefficient dissipation model equation
of the standard form, but that has been deferred to the future.

1.1. Modelling methodology

The phenomenon of turbulence is a complex interaction between the linear production
mechanism, the nonlinear spectral cascade and the viscous dissipation of turbulent
kinetic energy. The relative importance of each mechanism depends on the state of
turbulence and the mean deformation. The three limiting states of turbulence – rapid
distortion, equilibrium and decay – represent the extremes of the physics of turbulence.
In the rapid distortion state, only the linear physics is relevant. At the other extreme,
in the decaying isotropic state, only the nonlinear cascade and dissipation effects are
present. In the equilibrium state of turbulence, both linear and nonlinear mechanisms
are important. In order to build an ‘optimal’ turbulence model, which incorporates
all the above features, a two-step methodology is proposed.

In the first step, pressure–strain correlation models for each of the extreme states
are developed separately. As each extreme state is amenable to special analysis, the
individual models (read model coefficients) can be developed with a degree of mathe-
matical rigour impossible in arbitrary states. The intermediate states of turbulence
are more difficult to analyse because of the complex interplay among the various
competing processes. However, to date, there is no evidence of loss of regularity in
the physics of turbulence between the rapid distortion state and equilibrium. The
turbulence physics appears to vary smoothly between the different extremes. This
means that the individual models of the extreme states can be expected, collectively,
to contain all of the important physics. A matched asymptotic interpolation between
the extreme states appears fully justified. In the second step, we propose that the
pressure–strain correlation model for an arbitrary state of turbulence be determined
by interpolation between the models of extreme states using a suitable state parameter.
The interpolation scheme proposed herein must be regarded as only an initial, yet
important, effort towards fully understanding and modelling the intermediate states
of turbulence.

The pressure–strain correlation model cannot be developed completely independent
of the dissipation model. The two-step modelling methodology described above can
also be used to develop a variable-coefficient dissipation model of the standard form.
A dissipation model equation with variable optimal coefficients may enjoy a greater
degree of validity than its constant-coefficient counterpart.

Equilibrium turbulence. This state of turbulence which permits fixed point and
bifurcation analyses is encountered in many fully developed engineering flows. Many
aspects of turbulence in equilibrium are understood from laboratory and numerical
experiments. Our objective is to construct a turbulence model that is consistent
with observed behaviour. This calls for an intimate understanding of the connection
between the model coefficients and predicted equilibrium behaviour. We perform
fixed point and bifurcation analyses to establish, for the first time, the exact analytical
relationship between the model’s coefficients and its equilibrium behaviour. Once this
connection is determined, the coefficients are chosen to yield the required equilibrium
behaviour. The analyses indicate that in complex turbulent flows (with dominant
rotation and/or strain effects), the equilibrium model coefficients must be functions
of the mean flow deformation. The ratio of mean strain to total deformation, which
we call the deformation parameter, emerges as the most significant metric of the
mean flow deformation. This parameter goes to unity in purely strained flows and is
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zero in purely vortical flows. We note that fixed point analyses have been performed
in different contexts by Abid & Speziale (1993) and Speziale & Mac Giolla Mhuiris
(1989, 1990).

Rapid distortion limit. When the mean flow deformation rate is much larger than
the turbulence strain rate, a linear analysis called the rapid distortion theory (RDT)
is possible. We will specify the model coefficients in the rapidly distorted limit
by requiring consistency with the RDT result of Crow (1968), the so-called Crow
constraint. The pressure–strain model for moderately non-equilibrium turbulence is
obtained by interpolating between the rapid distortion and equilibrium models using
a parameter called the timescale ratio. This is the ratio between turbulent and mean
flow strain rates and is the most significant scalar metric of the degree of departure
from equilibrium. It goes to zero in the rapid distortion limit and to a known value
in the equilibrium limit.

Decaying turbulence. In this limiting state, which is called the return-to-isotropy
turbulence, the production mechanism is absent. Only a portion of the pressure–
strain correlation, the slow part, is non-zero. Detailed consideration of the slow
pressure–strain correlation is deferred to future work.

In this paper, we will consider the popular quasi-linear pressure–strain correlation
model form (which includes all LRR-type models). Again, our principal objective is
to evaluate the model coefficients to yield the highest degree of consistency possible
with observed behaviour. In our model development, we will restrict ourselves to two-
dimensional mean flows although the methodology itself is equally valid for other
higher-order model forms and three-dimensional mean flows. The word ‘complex’
in the title of the paper refers to non-traditional combinations of mean strain and
rotation, and flows far from equilibrium. The remainder of the paper is organized
as follows. In § 2, we present the Reynolds stress closure equations. The fixed point
and bifurcation analyses are given in § 3. The equilibrium pressure–strain correlation
model is developed in § 4. In § 5, we propose a non-equilibrium modification to the
model. Section 6 contains the results and discussion, and we conclude in § 7 with a
summary.

2. Turbulence closure equations
In incompressible homogeneous turbulence subject to constant mean velocity gra-

dients, the exact Reynolds stress transport equation in an inertial reference frame is
given by

duiuj
dt∗

= Pij − εij + φ′ij . (1)

The terms in the above equation are, respectively, the time rate of change, production
(Pij), dissipation (εij) and pressure–strain correlation (φ′ij) of Reynolds stress:

Pij = −uiuk ∂Uj

∂xk
− ujuk ∂Ui

∂xk
, εij = 2ν

∂ui

∂xk

∂uj

∂xk
, φ′ij = p

(
∂ui

∂xj
+
∂uj

∂xi

)
. (2)

The production and dissipation rate of turbulent kinetic energy are, respectively,
P = 1

2
Pii and ε = 1

2
εii. The dissipation is decomposed into its deviatoric and isotropic

parts:

εij = dij + 2
3
εδij . (3)



Pressure–strain correlation modelling 95

The deviatoric part of dissipation is combined with the pressure–strain correlation
and the two are modelled together:

φij = φ′ij + dij . (4)

In high-Reynolds-number turbulence, the dissipation is isotropic (dij = 0) and, for
all practical purposes, φij is the pressure–strain correlation. Closure models are now
needed for the pressure–strain correlation (φij) and dissipation rate (ε).

As mentioned in the Introduction, we will focus on the quasi-linear pressure–strain
correlation model form (following the SSG notation):

φij = −(C0
1 ε+ C1

1P )bij + C2KSij + C3K(bikS
∗
jk + bjkS

∗
ik − 2

3
bmnS

∗
mnδij)

+C4K(bikW
∗
jk + bjkW

∗
ik), (5)

where the C are model coefficients and

S∗ij =
1

2

(
∂Ui

∂xj
+
∂Uj

∂xi

)
, W ∗

ij =
1

2

(
∂Ui

∂xj
− ∂Uj

∂xi

)
, K = 1

2
uiui, bij =

uiuj

2K
− 1

3
δij .

(6)

We choose this form of the pressure–strain model for two reasons. First, this form has
mathematical justification in high-Reynolds-number near-equilibrium turbulent flows
with a two-dimensional mean velocity field (Speziale et al. 1991). Second, this form
is most frequently used in practical Reynolds stress closure calculations: it includes
all linear-pressure strain models (e.g. the LRR model); further, some of the nonlinear
models (such as the SSG model) can also be reduced to this form near equilibrium.
For the LRR model, the coefficients are

C0
1 = 3.0, C1

1 = 0, C2 = 0.8, C3 = 1.75, C4 = 1.31. (7)

A variant of the above model also given in LRR is

C0
1 = 3.6, C1

1 = 0, C2 = 0.8, C3 = 1.2, C4 = 1.2. (8)

For the quasi-linearized SSG model, the coefficients are

C0
1 = 3.4, C1

1 = 1.8, C2 = 0.36, C3 = 1.25, C4 = 0.4. (9)

In an important departure from many previous models, in this study the model coef-
ficients are not assigned constant values, but are functions of the mean deformation
and the state of turbulence:

Cα = Cα(bij , Sij ,Wij , K, ε). (10)

The anisotropy evolution equation can be derived from the Reynolds stress
equation:

dbij
dt∗

= −bij
(
L0

1

ε

K
− L1

1bmnS
∗
mn

)
+ L2S

∗
ij + L3(bikS

∗
jk + bjkS

∗
ik − 2

3
blmS

∗
lmδij)

+L4(bikW
∗
jk + bjkW

∗
ik). (11)

In the above equation, the pressure–strain correlation model coefficients are redefined
as

L0
1 ≡ C0

1

2
− 1, L1

1 ≡ C1
1 + 2, L2 ≡ C2

2
− 2

3
, L3 ≡ C3

2
− 1, L4 ≡ C4

2
− 1. (12)
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The turbulent kinetic energy evolves according to

dK

dt∗
= P − ε, (13)

and the modelled evolution equation for dissipation is

dε

dt∗
= Ce1

ε

K
P − Ce2 ε

2

K
. (14)

In the current analysis, Ce1 and Ce2 are arbitrary scalar functions of the state of
turbulence and mean deformation invariants. In general, the dissipation rate model
(with constant coefficients) represents a major weak link in turbulence modelling of
complex flows. Its form and physical content deserve separate consideration which is
not attempted here. More sophisticated dissipation models currently available seem
to lack the general applicability of this simple model. A complete analysis with a
more advanced dissipation equation will be attempted in the future.

Equations (11), (13) and (14) constitute the second-order closure equations in
homogeneous turbulence. These equations can be non-dimensionalized using the
norm of the velocity gradient tensor:

η = S∗ijS
∗
ij +W ∗

ijW
∗
ij . (15)

The non-dimensional quantities are

Sij = S∗ij/
√
η, Wij = W ∗

ij/
√
η, dt =

√
η dt∗, ω = ε/(

√
ηK), (16)

where ω is the timescale ratio, the ratio of the turbulence to mean flow strain rates.
In the above equations, symbols with and without asterisks denote dimensional and
dimensionless quantities respectively. In dimensionless time, the anisotropy transport
equation is

dbij
dt

= −bij(L0
1ω − L1

1bmnSmn) + L2Sij + L3(Sikbkj + bikSkj − 2
3
bmnSmnδij)

+L4(Wikbkj − bikWkj). (17)

In dimensionless time, the anisotropy evolution depends only on: (i) the normalized
mean strain and rotation and not on the magnitude of deformation (η); and (ii)
the timescale ratio (ω) and not individually on kinetic energy and dissipation. The
evolution equation for the timescale ratio, ω, is easily obtained from those for the
turbulent kinetic energy and dissipation:

dω

dt
= −2ω(Ce1 − 1)bmnSmn − (Ce2 − 1)ω2. (18)

The first term on the right-hand side of equation (18) represents the production of
the timescale ratio and the second term represents its destruction.

The anisotropy equation (17) by itself is not autonomous as its behaviour is
dependent on the relative timescale (ω). The anisotropy equation in conjunction with
the equation for the relative timescale (18) form an autonomous nonlinear dynamical
system which can be analysed. Therefore, the effects of the pressure–strain correlation
and dissipation models are inseparable and the two must be modelled together to
achieve the best results. The behaviour of this system of equations depends on the
parameter values. The parameters of this system can be categorized into model
parameters (C) and mean-flow deformation parameters.
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3. Equilibrium analysis

At the very least, the pressure–strain correlation model must produce the ‘cor-
rect’ equilibrium behaviour. The purpose of this section is to establish the causal
relationship between the model’s coefficients and its equilibrium behaviour. This can
be accomplished by performing fixed point and bifurcation analyses of the anisotropy
evolution equation. The structural equilibrium state of turbulence is described by the
fixed points of the equations (17) and (18):

dbij
dt

= 0 and
dω

dt
= 0. (19)

At equilibrium, equations (17) and (18) indicate that the Reynolds stress is a tensor
function of only the mean strain and rotation rates. Representation theory can then
be invoked to determine the most general tensor function that can be constructed
with the strain and rotation rates.

A brief introduction to representation theory based on the observations of Ru-
binstein (1999, private communication) is now provided. Representation theory has
its roots in the classical invariant theory. The goal of representation theory is to
exhibit an algebraically independent set of polynomial invariants, say of isotropic
tensor functions of arbitrary order in a finite number of tensor variables, so that any
polynomial invariant can be expressed in this basis. This has been accomplished for
various special cases, the most relevant of which to the present work is the application
of this theory to continuum mechanics by Rivlin (1957). Rivlin gives algebraic bases
of isotropic functions of one-, two- and three-dimensional tensors.

In the present case, representation theory indicates that the most general physically
permissible polynomial form for the Reynolds stress anisotropy in terms of the strain
and rotation rates (for two-dimensional mean flow) is (Pope 1975; Girimaji 1996)

bij = G1Sij + G2(SikWkj −WikSkj) + G3(SikSkj − 1
3
η1δij), (20)

where

η1 = SijSij and η2 = WijWij so that η1 + η2 = 1. (21)

In the above equations, G1–G3 are scalar functions of the invariants of strain and
rotation rate tensors yet to be determined. During evolution of bij , G1–G3 will be
functions of time as well.

The following identities are valid for all two-dimensional mean flows:

SikSkj = 1
2
η1δ

(2)
ij , WikWkj = − 1

2
η2δ

(2)
ij ,

SikSklSlj = 1
2
η1Sij , SikWklSlj = − 1

2
η1Wij,

WikSklWlj = 1
2
η2Sij , Smnbmn = G1η1,

 (22)

where δ(2)
ij and δij are two- and three-dimensional Kronecker delta functions respec-

tively. Using these rules, we write

Sikbkj + bikSkj − 2
3
bmnSmnδij = 1

3
η1G3Sij + 2G1(SikSkj − 1

3
η1δij),

Wikbkj − bikWkj = −G1(SikWkj −WikSkj) + 2η2G2Sij .

}
(23)

The anisotropy evolution equation can now be written in terms of its representa-
tion. Substitution of the anisotropy representation (equation (20)) into its evolution
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equation (17) followed by simplifications using equation (23) leads to

dG1

dt
Sij +

dG2

dt
(SikWkj −WikSkj) +

dG3

dt
(SikSkj − 1

3
η1δij)

= − [G1Sij + G2(SikWkj −WikSkj) + G3(SikSkj − 1
3
η1δij)](L

0
1ω − L1

1G1η1)

+ L2Sij + L3[
1
3
η1G3Sij + 2G1(SikSkj − 1

3
η1δij)]

+ L4[−G1(SikWkj −WikSkj) + 2η2G2Sij]. (24)

The coefficients of each tensor on either side of the above equation have to be equal:

dG1

dt
+ G1(L

0
1ω − L1

1G1η1) = L2 + 1
3
L3G3η1 + 2L4η2G2,

dG2

dt
+ G2(L

0
1ω − L1

1G1η1) = −G1L4,

dG3

dt
+ G3(L

0
1ω − L1

1G1η1) = 2G1L3.


(25)

Equations (25) along with (18) constitute the nonlinear system of evolution equa-
tions for Reynolds stresses in homogeneous turbulence (with two-dimensional, time-
invariant mean velocity gradients). Fixed point and bifurcation analyses of this system
are now performed.

The equilibrium state description (19) can be restated as

dG1

dt
=

dG2

dt
=

dG3

dt
=

dω

dt
= 0. (26)

Using the notation that the fixed point values are denoted by a superscript 0, the
algebraic fixed point relations are (using bmnSmn = G0

1η1)

2ω0(Ce1 − 1)G0
1η1 + (Ce2 − 1)(ω0)2 = 0,

−G0
1(L

0
1ω

0 − L1
1G

0
1η1) + L2 + 1

3
L3G

0
3η1 + 2L4η2G

0
2 = 0,

G0
2(L

0
1ω

0 − L1
1G

0
1η1) + G0

1L4 = 0,

G0
3(L

0
1ω

0 − L1
1G

0
1η1)− 2G0

1L3 = 0.

 (27)

This system of equations has five fixed points:

ω0 = 0, G0
1 = 0, L2 + 1

3
L3G

0
3η1 + 2L4η2G

0
2 = 0; (28)

ω0 = 0, G0
1 = − 1√

η1

Q1, G0
2 =

L4

L1
1η1

, G0
3 = − 2L3

L1
1η1

; (29)

ω0 = 0, G0
1 = +

1√
η1

Q1, G0
2 =

L4

L1
1η1

, G0
3 = − 2L3

L1
1η1

; (30)

ω0 = −2
Ce1 − 1

Ce2 − 1
G0

1η1, G0
1 = − 1√

η1

Q∗, G0
2 =

L4

L∗η1

, G0
3 = − 2L3

L∗η1

; (31)

ω0 = −2
Ce1 − 1

Ce2 − 1
G0

1η1, G0
1 = +

1√
η1

Q∗, G0
2 =

L4

L∗η1

, G0
3 = − 2L3

L∗η1

. (32)

In the above equations, Q1 and Q∗ are defined as

Q1 =

√
−L2

L1
1

+
2

3

(
L3

L1
1

)2

− 2

(
L4

L1
1

)2
1− η1

η1

, Q∗ =

√
−L2

L∗
+

2

3

L2
3

L∗2
− 2

L2
4

L∗2
1− η1

η1

,

(33)
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where

L∗ = 2L0
1

Ce1 − 1

Ce2 − 1
+ L1

1. (34)

In general flows, a negative value of G0
1 is consistent with a gradient-diffusion-type

effect. A positive value would imply counter-gradient diffusion. In the context of ho-
mogeneous flows, negative G1 is associated with kinetic energy transfer from the mean
to fluctuating field and positive G1 indicates energy transfer in the opposite direction.

The quantity Q1 is real only in the interval η1 > ηa1:

η1 > η
a
1 =

2L2
4

−L2L
1
1 + 2

3
L2

3 + 2L2
4

. (35)

Similarly, Q∗ is real only when η1 > ηb1:

η1 > η
b
1 =

2L2
4

−L2L∗ + 2
3
L2

3 + 2L2
4

. (36)

In the case of both SSG and LRR pressure–strain models ηa1 > ηb1 . The values ηa1 and
ηb1 will soon be identified as the bifurcation points of the model system.

3.1. Stability of fixed points

In order to establish the stability of a fixed point, we need to determine if any small
perturbation of the system away from the fixed point eventually returns to the fixed
point after a sufficiently long time. This can be established most expeditiously by
investigating the eigenvalues and eigenvectors of the Jacobian of the system linearized
about the fixed point. Negative eigenvalues correspond to the attraction of the so-
lution along the corresponding eigenvector. A positive eigenvalue repels the solution
trajectory away from the fixed point along its eigenvector. For a fixed point to be
stable all the eigenvalues must be negative, so that all trajectories in the neighbour-
hood of the fixed point are attracted towards the fixed point. If all permissible initial
conditions are attracted to a fixed point, then it is globally asymptotically stable. The
set of all initial conditions that ultimately evolve to a stable fixed point is called the
basin of attraction of that fixed point. For a nonlinear set of equations, such as the
one considered here, it is difficult to establish the basin of attraction or global stability
and we will only seek to establish the local asymptotic stability of each of the fixed
points. First, the various types of fixed points are listed.

1. Attractor: Real parts of all eigenvalues negative; stable fixed point.
2. Repeller: Real parts of all eigenvalues positive; unstable fixed point.
3. Saddle: Real parts of some eigenvalues positive and others negative; unstable

fixed point.
4. Limit cycle: All eigenvalues purely imaginary; long-time solution is oscillatory.
The Jacobian of the equation system at any fixed point is given by

J =

 −2(Ce1 − 1)G0
1η1 − 2ω0(Ce2 − 1) −2ω0(Ce1 − 1)η1

−G0
1L

0
1 −L0

1ω + 2G0
1L

1
1η1

−G0
2L

0
1 L1

1η1G
0
2 − L4

−G0
3L

0
1 L1

1η1G
0
3 + 2L3

0 0
2L4η2

1
3
L3η1

−L0
1ω + L1

1G
0
1η1 0

0 −L0
1ω + L1

1G
0
1η1

 . (37)
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Fixed point 1. This fixed point exists for the entire range of η1 values and is given
by

ω0 = 0, G0
1 = 0, L2 + 1

3
L3G

0
3η1 + 2L4η2G

0
2 = 0.

At this, and every other, fixed point G0
2 and G0

3 also satisfy (from equations (27)),

G0
2

G0
3

= − L4

2L3

, (38)

leading to

G0
2 =

L2L4

2
3
L2

3η1 − 2L2
4η2

, G0
3 =

−2L2L3

2
3
L2

3η1 − 2L2
4η2

. (39)

The Jacobian at this fixed point is

J =


0 0 0 0
0 0 2L4(1− η1)

1
3
L3η1

0 L1
1η1G

0
2 − L4 0 0

0 L1
1η1G

0
3 + 2L3 0 0

 . (40)

The eigenvalues of the Jacobian are

λ1 = 0, λ2 = 0, λ3 = +
√
η1L

1
1Q
∗, λ4 = −√η1L

1
1Q
∗, (41)

and the corresponding eigenvectors are

v1 = [1, 0, 0, 0],

v2 =

[
0, 0,− L3η1

6L4(1− η1)
, 1

]
,

v3 = [0,+
√
η1L

1
1Q
∗, L1

1η1G
0
2 − L4, L

1
1η1G

0
3 + 2L3],

v4 = [0,−√η1L
1
1Q
∗, L1

1η1G
0
2 − L4, L

1
1η1G

0
3 + 2L3].


(42)

When Q∗ is real (η1 > ηb1), λ3 is positive and λ4 is negative leading to this fixed point
being a saddle and, hence, unstable. When η1 < ηb1 the fixed point is non-hyperbolic,
that is, all eigenvalues of the linearized Jacobian have zero real parts. Linear analysis
about the fixed point is inadequate to determine its stability. The more complicated
centre manifold analysis needs to be performed to evaluate the stability characteristics.
We will merely identify this fixed point as a limit cycle.

Fixed points 2 and 3. These fixed points are given by

ω0 = 0, G0
1 = ± 1√

η1

Q1, G0
2 =

L4

L1
1η1

, G0
3 = − 2L3

L1
1η1

, (43)

and exist only in the range η1 > ηa1 .
The Jacobian of this fixed point is

J =


0 0 0 0
−G0

1 2G0
1η1(L

1
1 + Ce1 − 1) 2L4(1− η1)

1
3
L3η1

−G0
2 0 G0

1η1(L
1
1 + 2Ce1 − 2) 0

−G0
3 0 0 G0

1η1(L
1
1 + 2Ce1 − 2)

 .

(44)

The eigenvalues of fixed points 2 and 3 are given by

λ1 = ∓2(Ce1 − 1)
√
η1Q1, λ2 = ±2L1

1

√
η1Q1, λ3 = λ4 = ±L1

1

√
η1Q1. (45)
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The eigenvectors are

v1 =

[
η1

L0
1

(L1
1 + 2Ce1 − 2),

G0
1η1(L

1
1 + 2Ce2 − 2) + 2L4η2 + 1

3
L3η1

2G0
1η1(L

1
1 + Ce1 − 1)

, 1, 1

]
,

v2 = [0, 1, 0, 0],

v3 =

[
0,−2L4(1− η1)

G0
1L

1
1η1

1, 0

]
,

v4 =

[
0,

L3

3G0
1L

1
1

0, 1

]
.


(46)

For all of the models considered, L1
1 and (Ce1 − 1) are both positive and η1 is also

positive by definition. As a result, some of the eigenvalues will be positive and others
negative. Therefore, fixed points 2 and 3 are of the saddle type. These two fixed points
are unstable when η1 > ηa1 and do not exist otherwise. They do not play an important
role in the long-time behaviour of the Reynolds stress anisotropy.

If, however, the model coefficient Ce1 is less than unity and L1
1 is positive, all the

eigenvalues of fixed point 2 will be positive and it will be a repeller. Fixed point 3
will then be an attractor since all its eigenvalues will be negative.

Fixed point 4. This fixed point is given by

ω0 = −2
Ce1 − 1

Ce2 − 1
G0

1η1, G0
1 = − 1√

η1

Q∗, G0
2 =

L4

L∗η1

, G0
3 = − 2L3

L∗η1

. (47)

This fixed point exists only for η1 > ηb1 (see equation (36) for definition).

The Jacobian in this case cannot be simplified any further than that given in
equation (37). Due to the complex nature of the Jacobian, it is difficult to obtain
all the eigenvalues and eigenvectors symbolically. However, one eigenvalue is easily
obtained by inspection:

λ1 = G0
1η1L

∗, (48)

and the corresponding eigenvector is

v1 =

[
0, 0, 1,−6

L4(1− η1)

L3η1

]
. (49)

The eigenvalues are evaluated numerically and plotted in figure 1 as a function of
the parameter η1 for the linearized SSG pressure–strain correlation model. All of
the eigenvalues are negative for all values of η1, indicating that this is, indeed, an
attracting fixed point. (Note that the quantity plotted is the negative of the actual
eigenvalues.) Another important point to be gleaned from the figure is that eigenvalue
λ4 is always about an order of magnitude smaller than the other eigenvalues. This
indicates that the solution evolves slowly along the eigenvector associated with λ4

and rapidly along all other directions. The eigenvector direction corresponding to
λ4 is also shown in figure 1. This eigenvector is almost coincident with the ω-axis,
indicating that ω evolves more slowly than the other three variables. All eigenvalues
of this fixed point with the LRR pressure–strain correlation model (not shown) are
also negative indicating an attracting fixed point. The LRR model eigenvalues are
qualitatively similar to those of the SSG model.
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Figure 1. (a) Eigenvalues of fixed point 4 as a function of η1. (b) Components of eigenvector
corresponding to eigenvalue λ4.
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Figure 2. Eigenvalues of fixed point 5 as a function of η1.

Fixed point 5. This fixed point

ω0 = −2
Ce1 − 1

Ce2 − 1
G0

1η1, G0
1 = +

1√
η1

Q∗, G0
2 =

L4

L∗η1

, G0
3 = − 2L3

L∗η1

, (50)

also exists only for η1 > ηb1 . The eigenvalues calculated numerically are shown in
figure 2 for the SSG model. All of the eigenvalues are positive indicating that the
fixed point is a repeller and, hence, unstable.
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Figure 3. Bifurcation diagram of G0
1 for SSG model. Fixed point G1

1: unstable (saddle) for η > ηb1
and centre for η < ηb1 . G2, G3: unstable (saddle). G4: stable (attractor). G5: unstable (repeller).
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Figure 4. Bifurcation diagram of ω for SSG model. Fixed point ω1(= ω2 = ω3) is unstable
(saddle) for η > η1b1 and stable for η < ηb1 . ω4(= ω5) is stable (attractor).

3.2. Bifurcation analysis

For a given pressure–strain model, the equilibrium behaviour of the dynamical
system of equations (17) and (18) depends solely upon the value of the deformation
parameter η1. The nature and even the number of fixed points of this system change
with changing parameter values. The equation system has two bifurcation points, ηa1
and ηb1 . For the definitions of ηa1 and ηb1 , see equations (35) and (36).

In the interval η1 ∈ (ηa1 , 1), both Q1 and Q∗ are real, and all of the five fixed
points exist. Of these, only 4 is stable (attractor). The system undergoes bifurcation at
η1 = ηa1 when fixed points 2 and 3 cease to exist. In the interval η1 ∈ (ηb1 , η

a
1) only Q∗

is real and the system has three fixed points (1, 4 and 5). Again, only fixed point 4 is
attracting and others are unstable. The model system undergoes a second bifurcation
at η1 = ηb1 when the attractor (point 4) and the repeller (point 5) vanish. Finally, in
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Figure 6. Bifurcation diagram of G0
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the interval η1 ∈ (0, ηb1), both Q1 and Q∗ are imaginary and the solution goes into a
limit cycle about the only surviving fixed point, 1.

The bifurcation diagrams of G0
1, ω

0, G0
2 and G0

3 as a function of the parameter η1

are given in figures 3, 4, 5 and 6. The figures are shown for the SSG pressure–strain
correlation model. The bifurcation diagram of G0

1 for the LRR model is given in
figure 7. The qualitative behaviour of the two models are nearly the same and only
the bifurcation points are different: ηb1 is 0.25 for LRR and 0.35 for SSG.

Figures 5 and 6 reveal a possible flaw in the current models. It is seen that the
equilibrium values G0

2 and G0
3 corresponding to fixed point 1 exhibit very large changes

in the proximity of η1 = 0.8. From equation (39), it is easily seen that the fixed point
values become singular when

η1(singular) =
L2

4

L2
4 + 1

3
L2

3

. (51)
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1 for LRR model. Fixed point G1

1: unstable (saddle) for η > ηb1
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A model calculation with the initial condition in the vicinity of fixed point 1 with
η1 ≈ η1(singular) may exhibit abrupt and large changes in the values of anisotropy.
Since there is no apparent sudden change in the physics of the Navier–Stokes
equation at this parameter value, the model behaviour at this fixed point must be
deemed unphysical. However, this flaw is not crucial since the equilibrium behaviour
at this η1 value is governed by fixed point 4 which is well behaved. The present
modelling work does not address the rectification of this defect.

3.3. Equilibrium behaviour of model system

The fixed point and bifurcation analyses enable us to characterize the equilibrium
behaviour of the model. The long-time behaviour of the model solution can be
completely parameterized in terms of the deformation parameter η1.

Long-time behaviour for η1 > ηb1 . The system has multiple fixed points, but at long
times all solution trajectories are attracted to fixed point 4. The anisotropy and
timescale ratio converge monotonically to their respective non-zero fixed point values
given in equation (47). The production to dissipation ratio at this equilibrium state is

P

ε
(equilibrium) =

Ce2 − 1

Ce1 − 1
(52)

for all η1. In appropriately normalized time, the turbulent kinetic energy and dissipa-
tion grow exponentially:

d lnK

dτ
=
P

ε
− 1,

d ln ε

dτ
= Ce1

P

ε
− Ce2, (53)

where τ = ω0t. If the equilibrium growth rates (in normalized time) are required
to be functions of η1, then the dissipation-equation model coefficients must have
dependence on η1.

Long-time behaviour for η1 < ηb1 . In this parameter range, only one fixed point,
1, exists and it dictates the long-time behaviour of the solution. The solitary fixed
point indicates that the character of the dynamical system is now linear. (Nonlinear
systems are characterized by multiple fixed points.) In linear systems, the solution has
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a strong dependence on the initial conditions at all times. Therefore, the equilibrium
behaviour of the system, in this parameter range, is very difficult to generalize. We
present some features observed in numerical calculations:

1. ω decays monotonically to zero. Note that oscillation about zero is not permis-
sible since a negative value of ω would violate realizability.

2. G1 oscillates about zero. This is permitted. Negative values indicate positive
production and positive values correspond to negative production.

3. G2 and G3 converge to non-zero values G0
2 and G0

3. While some components of
the anisotropy tensor oscillate, the others go to their equilibrium values monotonically.

4. The production to dissipation ratio is no longer a constant and can be periodic
depending upon the initial condition. The amplitude and frequency of the fluctuation
depend upon η1.

5. Very significantly, with decreasing η1, the asymptotic growth rates of kinetic
energy and dissipation decrease. For small enough η1 values kinetic energy and
dissipation decay in time leading to relaminarization.

The causal relationship between the model coefficients and its equilibrium behaviour
is now listed:

C0
1 , C

1
1 , C2, C3: Their most significant influence is on the equilibrium anisotropy

(47). They play a secondary role in determining the bifurcation points of the system
(35), (36).

C4: This coefficient has the greatest influence in determining the bifurcation point.
The closer the value of C4 to 2, the smaller the ηb1 . The range of parameter values
for which the turbulence is energetic increases as C4 gets closer to 2. The LRR
model (C4 = 1.31) is energetic for a wider range of elliptic flows than the SSG model
(C4 = 0.4). This explains the marginally better predictions of LRR over SSG in
elliptic flows observed by Blaisdell & Sharif (1996). This coefficient also influences
equilibrium anisotropy values.

Ce1, Ce2: These two coefficients exclusively determine the growth rates of kinetic
energy and dissipation (53). They also play a marginal role in determining the
anisotropy and its bifurcation (34).

Three-dimensional and inhomogeneous flows. Fixed point analysis of homogeneous
three-dimensional flows is very similar in concept, but its execution is rendered difficult
by the large number of candidate tensors. Analysis of three-dimensional flows using
a symbolic manipulator (MAPLE) is currently underway. Single-point fixed point
analysis is, even conceptually, not possible for inhomogeneous flows. The presence
of Reynolds stress gradients arising out of mean advection and turbulence transport
terms complicates matters and a functional fixed point analysis is needed. In this
case, rather than determining fixed point values, we will need to seek fixed point
functions.

4. Equilibrium pressure–strain correlation model
In order to achieve the greatest degree of fidelity, the fixed point and bifurcation

behaviour of the model must be matched with that of the physical (Navier–Stokes)
system. However, the bifurcation behaviour of the physical system, especially that of
the unstable fixed points, is difficult to determine. In this paper, we will only match
the behaviour of those fixed points which determine the long-time solution.

In general, the pressure–strain correlation must be a function of the state of
turbulence and the mean deformation. Any model coefficient (Cα) is, therefore, a scalar
function of the invariants of the deformation and state of turbulence, equation (10).
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All the turbulence state variables at equilibrium are completely determined by mean
flow deformation. The equilibrium coefficients are, therefore, functions exclusively of
the mean deformation:

Ceq
α = Ceq

α (Sij ,Wij). (54)

The objective of this section is to determine Ceq
α by requiring that the bifurcation

behaviour of the model system be consistent with that of the physical (Navier–Stokes)
system. The model equilibrium behaviour was described in the previous section and
that of the physical system needs to be established. We will restrict ourselves to
the equilibrium behaviour of homogeneous two-dimensional mean flows of different
strain to vorticity ratios. Vorticity-dominated elliptic flows are of particular interest
since the current models appear to be satisfactory in strain-dominated flows.

4.1. Equilibrium behaviour of physical system

The equilibrium behaviour of elliptic streamline flows is inferred from the direct
numerical simulation (DNS) and linear stability analysis results.

Blaisdell & Shariff (1996) have performed direct numerical simulations of several
elliptic flows with different mean strain to rotation ratios. Initially, the mean-flow
rotation suppresses the kinetic energy growth rate: the quicker the rotation, the larger
and longer the suppression. At longer times, the nonlinearity is re-established as
evidenced by the growth of turbulent kinetic energy and other statistics. They claim
that for all ellipticity parameters, ‘the turbulence seems to develop an asymptotic state
that is independent of the ratio of mean rotation to mean strain’. The DNS data
show no sign of bifurcation of equilibrium behaviour in the range of the ellipticity
parameters considered.

The qualitative behaviour of elliptic flows can also be surmised from linear stability
analysis (Speziale, Abid & Blaisdell 1996). Consistent with DNS observations, linear
analysis indicates that all elliptic flows, even the most weakly strained ones, are
energetic. It can be proven that flows that are linearly unstable will be unstable in
nonlinear analysis also (Speziale et al. 1996). The pertinence of linear stability analysis
results to Navier–Stokes physics is, therefore, very strong. Further, according to linear
analysis, for a given strain rate, the higher the rotation rate, the higher is the kinetic
energy growth rate. This feature is observed in DNS at intermediate times, before the
nonlinear effects come into full play. These analytical results lend further credibility
to the DNS results.

The equilibrium behaviour of the physical system, as inferred from DNS data and
linear stability analysis, can be summarized as follows:

1. All elliptic flows are energetic at long times as the nonlinear effects prevail even
in weakly strained cases. There is no bifurcation in the long-time behaviour.

2. The non-dimensional kinetic energy growth rate is independent of the strain to
rotation rate ratio. This is true in all flows with non-zero strain rates.

3. The pure mean rotation (zero strain rate) flow represents a singular limit of
elliptic flow behaviour. In this case, production is zero and the cascade is suppressed.
Kinetic energy dissipates due to viscous action at all scales.

4.2. Specification of model coefficients

We will now specify model coefficients to capture important features of the equilib-
rium behaviour of the physical system summarized above. The model coefficients at
equilibrium can be constant or functions of the invariants of deformation (equation
(54)). The equilibrium values of the coefficients cannot be functions of the state of
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turbulence (bij , ω), for at equilibrium the mean deformation completely determines
the state of turbulence. In two-dimensional mean flows, the only irreducible scalar
invariants of the deformation tensor are η1 and η2. Since η1 +η2 = 1, there exists only
one independent irreducible scalar invariant of the deformation tensor. We choose η1,
which is a ratio of strain to total deformation, as the independent invariant. Further,
the bifurcation of the system depends upon the value of η1. From the fixed point and
bifurcation analysis, η1 emerges as the natural choice of scalar function on which the
equilibrium model coefficients must depend:

Ceq
α = Ceq

α (η1). (55)

We now seek to identify this functional dependence.
The most important feature of the long-time behaviour of the physical system

is its bifurcation. If the bifurcation points of the model and physical systems do
not coincide, the model will be, even qualitatively, wrong. It will be seen later that
the bifurcation behaviour of the LRR and SSG models is quite different from that
observed in the DNS. This results in the gross disagreement between models and data
in elliptic flows. Here, we attempt to match the bifurcation points of the model and
physical systems.

The results for the physical system lead to one incontrovertible inference: there is
no bifurcation of equilibrium behaviour of turbulent elliptic flows for finite strain rate.
The bifurcation occurs at ηb1 = 0, the pure rotation limit:

ηb1 =
2L2

4

−L2L∗ + 2
3
L2

3 + 2L2
4

= 0, (56)

leading to

L4(η1 = 0) = 0 ⇒ C
eq
4 (η1 = 0) = 2. (57)

For non-zero values of L4, the model long-time behaviour will bifurcate at finite
values of η1, contrary to observed physics.

The traditional value for C4 is known to yield the right equilibrium behaviour for
the strain-dominated flows (η1 > 0.5). Based on these facts, we propose the following:

C
eq
4 =

{
C∗4 for η1 > 0.5
2.0− (2.0− C∗4 )f4(η1) for η1 < 0.5.

(58)

In the above equation, C∗4 is the traditionally used value and f4(η1) is a function
which is to be determined.

Since the bifurcation must not occur at any value of η1, the functional dependence
of L4 on η1 should be such that (see equation (36))

η1 >
2L2

4

−L2L∗ + 2
3
L2

3 + 2L2
4

. (59)

This requires that

η1(−L2L
∗ + 2

3
L2

3) > 2L2
4(1− η1) ⇒ L2

4 <
η1

2(1− η1)
(−L2L

∗ + 2
3
L2

3), (60)

leading to

L4 <

√
η1

1− η1

. (61)
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This suggests the following form for f4:

f4 =

(
η1

1− η1

)n
where n > 0.5. (62)

Good agreement with a variety of flows has been obtained with n = 0.75.
Other pressure–strain model coefficients. The values of the other coefficients of

the pressure–strain correlation model do not play a crucial role in determining the
bifurcation point, and, as a first step, will be treated as constants in this paper. In
the future, we will specify these model coefficients as functions of the strain rate also
by requiring closer fidelity with observed anisotropy values at the equilibrium state
of turbulence. The detailed DNS data, for a variety of strain and rotation dominated
flows, required for this purpose are not currently available.

Dissipation equation coefficients. The dissipation-equation model coefficients ex-
clusively control the production to dissipation ratio and the growth rates of kinetic
energy and dissipation in equilibrium turbulence (equation (53)). The DNS data
indicate (inconclusively) that the non-dimensional growth rates are nearly independent
of the strain–rotation ratio. Therefore, dissipation-equation model coefficients at the
equilibrium state must also be independent of the strain–rotation ratio as in the
current model. It is, therefore, well justified to leave the dissipation model equation
(equilibrium) coefficients unchanged at their traditional constant values.

5. Non-equilibrium modelling
The rapid distortion limit, in which the imposed mean deformation rate is much

larger than the turbulence deformation rate, represents the extreme state of non-
equilibrium turbulence. It is generally recognized that the turbulence behaves like
a viscous fluid in the equilibrium state (ω ∼ 1) and an elastic fluid in the rapid
distortion state (ω � 1), Crow (1968). In the equilibrium state, the turbulent stresses
are dependent on the imposed deformation rate, whereas in the rapid distortion
limit, they are dependent on the total deformation. This clearly indicates the need
for developing separate pressure–strain correlation models for these two states of
turbulence. In any intermediate (moderately non-equilibrium) state, the turbulence
will exhibit a combination of viscous and elastic properties. If the turbulence physics
is regular between the two extreme states, the model for intermediate states can
be determined by suitably interpolating between the two limiting behaviours. A
pressure–strain model in the rapid distortion limit is now sought.

When the Navier–Stokes equations for the fluctuating velocity field are considered
in the rapid distortion limit, the terms nonlinear in fluctuations can be neglected. The
resulting linear equations form the basis of the rapid distortion theory (RDT). Due
to their linearity, the RDT equations are closed, but only at the two-point level. The
lack of closure at the one-point level is due to the non-locality of the pressure field.
Since we are interested in a one-point closure for the pressure–strain model, much of
the RDT results cannot be used without further simplifying assumptions. Kassinos
& Reynolds (1994) have developed sophisticated one-point closures for the pressure–
strain correlations in the RDT limit that involve knowledge of two additional tensors.
For the sake of simplicity, we will restrict ourselves to the more elementary RDT
result of Crow (1968). The implementation of the Kassinos & Reynolds (1994) model
into the current methodology is deferred to a later time.

When isotropic turbulence is subjected to a large shear, the Reynolds stresses
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evolve, to leading order, according to (Crow 1968)

bij ≈ − 2
15
tSij for t→ 0. (63)

The pressure–strain correlation consistent with the above evolution is

φij = 4
5
KSij ⇒ Crd

2 = 4
5
. (64)

This is the value of C2 in many of the constant-coefficient pressure–strain correlation
models including LRR. While this value is appropriate in the rapid distortion limit,
Speziale et al. (1991) find that a value of Ceq

2 = 0.36 is better suited for the equilibrium
state.

Other model coefficients. Given our limited current knowledge, it is not very clear
what the other model coefficients (including dissipation model coefficients) must
be in the rapid distortion limit. The currently used model coefficients (numerical
constants) have been calibrated well in a large variety of important flows. There is
no compelling reason to modify them at the rapid distortion state. These coefficients
will be left unchanged at their equilibrium values until RDT can furnish their values
more precisely. Again, as more results emerge, these coefficients should be modified
accordingly.

5.1. Interpolation for intermediate states

The intermediate non-equilibrium state of turbulence is difficult to analyse as all of
the different physical processes play important roles and the governing equations
have to be considered in their full complexity. Mere quantification of the intermediate
stage, even at a phenomenological level, has not been attempted previously. In this
paper, we adopt a more pragmatic approach. Knowing the model coefficient values
in the two extreme states, we propose to obtain the coefficients in the intermediate
states by matched asymptotic expansion or any other formal procedure. Even if
such a formal approach is possible, it is likely to be quite complicated and we
propose a simple interpolation that yields desired results in test cases. The choice of
the turbulence-state interpolation parameter can be made with more mathematical
rigour. Clearly, the interpolation parameter must be a scalar function involving
state variables of turbulence −bij and ω. Exclusive dependence of the interpolation
parameter on the mean strain and rotation invariants is deemed unphysical, for they
contain no indication of the turbulence state. The scalar invariants that are suitable
for interpolation are −ω, bijbji, bijbjkbki, bijSij , bijSjkSki and bijSjkWki.

For the sake of simplicity, we choose only the timescale ratio (ω) to indicate the
state of turbulence and serve as the interpolation parameter. The rapid distortion
limit is characterized by ω → 0 and the equilibrium state by ω → ω0. The equilibrium
strain rate, ω0, is completely determined by the applied mean deformation and the
equilibrium values of the model coefficients. For the intermediate states, we propose

C2 = C2(ω). (65)

The best agreement with data, in the test cases considered, is given by

C2 = Crd
2 − (Crd

2 − Ceq
2 ) [ω/ω0]0.25. (66)

6. Results and discussion
The results obtained from the new model are compared to available DNS, LES

and RDT data in elliptic flows, rotating shear flows and rapidly distorted turbulence.
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Results from computations using the SSG pressure–strain model is also provided for
comparison. The new model used in the computations is now summarized:

φij = −(C0
1 ε+ C1

1P )bij + C2KSij + C3K(bikSjk + bjkSik − 2
3
bmnSmnδij)

+C4K(bikWjk + bjkWik)

where

C0
1 = 3.4, C1

1 = 1.8, C∗2 = 0.36, C3 = 1.25, C∗4 = 0.4;

Ce1 = 1.44, Ce2 = 1.88;

C2 =

{
C∗2 for ω/ω0 > 1
0.8− (0.8− C∗2 )(ω/ω0)0.25 for ω/ω0 < 1;

C4 =

{
C∗4 for η1 > 0.5
2.0− (2.0− C∗4 )[η1/(1− η1)]

0.75 for η1 < 0.5.


(67)

Choice of model coefficients. As seen in the previous sections, the choice of the
new model coefficients is guided by bifurcation analysis and rapid distortion theory.
Modifications to the coefficients beyond what is suggested by the above two
methodologies is kept to a minimum. Further, the model coefficients that are not
addressed in the two analyses are left unmodified at their standard constant values
pending further investigations. Although the agreement of the model with data in the
test cases considered can be further improved by ad hoc changes, it is not attempted
here. The purpose of this article is to demonstrate that a few rational modifica-
tions can substantially improve the predictive capability of the standard form of the
pressure–strain correlation model in flows previously considered unamenable to this
class of models.

Elliptic flows. It is now well documented that the LRR and SSG pressure–strain
correlation models perform very poorly in elliptic streamline flows (Blaisdell & Sharif
1996). Blaisdell & Sharif (1996) consider homogeneous turbulence subjected to the
following mean flow:

∂Ui

∂xj
=

 0 0 −γ − e
0 0 0

γ − e 0 0

 , (68)

where e =
√
η1/2 and γ =

√
(1− η1)/2. When 0 < |e| < |γ|, the mean streamlines are

elliptic with an aspect ratio of E ≡ √(γ + e)(γ − e). The data used here come from
three simulations with ellipticity aspect ratios of 1.5, 2.0 and 3.0. These correspond
to η1 (ratio of strain to total deformation) values of approximately 0.13, 0.26 and
0.39. The turbulence field is initially isotropic and the initial mean-flow to turbulence
timescale ratio for all three cases is ε0/SK0 = 0.167. The initial values for the kinetic
energy and dissipation were taken from the DNS data: K0 = 0.0428 (E = 1.5),
0.04566 (E = 2.0), 0.04857 (E = 3.0); ε0 = 0.12767 (E = 1.5), 0.14531 (E = 2.0),
0.16443 (E = 3.0).

The kinetic energy evolution calculated from DNS is compared to the Reynolds
stress closure model (RSCM) predictions in figure 8. As demonstrated in previous
studies, the SSG model does poorly. For the η1 = 0.13 and η1 = 0.26 cases, the model
predicts kinetic energy decay while the DNS data show vigorous growth. For the
η1 = 0.39 case, which has a larger component of strain, the SSG model does predict
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Figure 8. Evolution of kinetic energy in elliptic flows. DNS data from Blaisdell & Sharif (1996).
(a–c) correspond to ellipticity factors of 1.5, 2.0 and 3.0. These correspond to η1 = 0.13, 0.26 and
0.39.

kinetic energy growth, but at a rate much smaller than the observed rate. The present
model captures the kinetic energy growth quite well for all aspect ratios considered,
especially at later times.

The predicted turbulent shear stress anisotropy, b13, is compared with DNS data in
figure 9. This component of anisotropy determines the production and is crucial for
correct prediction of the kinetic energy evolution. As can be seen, the present model
captures the equilibrium behaviour of the anisotropy very well. The SSG model on
the other hand, is quite wrong. For η1 = 0.13 and η1 = 0.26 it predicts an equilibrium
value of nearly zero compared to the DNS value of nearly 0.2.

The comparison of the dissipation rate is shown in figure 10. Consistent with
previous results, the present model performs well for all cases and the SSG model
calculations are, even qualitatively, wrong. The normal anisotropy components b11

and b33 are compared in figures 11 and 12, respectively. Neither model performs
particularly well. The SSG model appears to capture the initial transition behaviour
a little better than the new model. But closer to the equilibrium state, the present
model performs better.

On the whole, the present model captures the evolution of kinetic energy, dissipation
and shear stress anisotropy extremely well. The normal anisotropy components
evolution is not as well simulated, although the equilibrium values are reproduced
adequately.

The poor performance of the SSG is easily understood in the context of the fixed
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Figure 9. Evolution of b13 energy in elliptic flows. DNS data from Blaisdell & Sharif (1996).

point analysis performed in § 3. The long-time solution of the SSG model bifurcates
at ηb1 ≈ 0.35 (see figure 3). The physical system shows no bifurcation for finite values
of η1. Therefore, the SSG solution for η1 < 0.35 will be even qualitatively wrong.
This is readily seen in the comparisons of the η1 = 0.13 and η1 = 0.26 cases: the
behaviour of the physical system (DNS) and model system is completely different.
As indicated by the bifurcation diagram (figure 3), the model system predicts zero
value for turbulent shear stress in these cases. The model predictions are qualitatively
correct when η1 = 0.39, in which case the fixed point is an attractor, rather than a
limit cycle. The LRR model can be expected to perform a little better (than the SSG
model) since its bifurcation value ηb1 ≈ 0.25 is closer to the observed value of zero.
Blaisdell & Sharif (1996) do, in fact, find this to be the case.

Bifurcation, or lack thereof, is also responsible for another feature seen in the
model calculations of anisotropy. In low-η1 calculations, the SSG model predicts
oscillatory behaviour (also seen in DNS data) whereas the present model does not.
The explanation is very simple. Due to lack of bifurcation, the long-time behaviour
of the present model is always determined by the attracting fixed point 4. The
fixed-coefficient models, however, undergo bifurcation and their long-time behaviour
is determined by the limit-cycle fixed point 1. While the new model does kill the
oscillatory behaviour, this is off-set by the fact that it converges to the correct
equilibrium value. The other models oscillate about completely wrong values. Of
course, it would be preferable for the model to oscillate about the right value. For this
we would need fixed point 4 to be a spiral attractor (eigenvalues with negative real
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Figure 10. Evolution of dissipation in elliptic flows. DNS data from Blaisdell & Sharif (1996).

part and non-zero imaginary parts) rather than a focus-type attractor (zero imaginary
parts). Major revamping of the pressure–strain correlation model form would be
necessary to accomplish this change and is not attempted here.

There is some ambiguity regarding the precise DNS values of the anisotropy
components at equilibrium. There is a potential danger of calibrating the model
coefficients to inconclusive or incorrect DNS calculations. However, one conclusion
from the DNS data is unequivocal. All elliptic flows are energetic in the equilibrium
state, an observation that is corroborated by linear analysis. The limiting value of
coefficient C4(= 2) is chosen to be consistent with this observation. Just this modifi-
cation is quite adequate to give reasonable prediction of the anisotropy components,
validating our methodology. When the anisotropy equilibrium values are known with
more certainty, the other coefficients will be modified to yield better agreement.

Rotating flows. Turbulent flows subject to reference-frame rotation and mean-flow
rotation share many similarities. Yet these two forms of rotation have contrasting
effects on the fluctuating velocity field. The LRR and SSG models are better suited for
frame-rotation flows: in fact the SSG model is calibrated in rotating shear flows. With
these models, the correct behaviour in rotating flows precludes good performance in
elliptic flows. This raises the important question of whether the present model, which
performs well in elliptic flows, is capable of predicting rotating flows.

We compare the results of the present model and the SSG model to the rotating
shear flow large-eddy simulation (LES) data of Bardina, Ferziger & Reynolds (1983).
The reference-frame rotation rate is given by Ω and the velocity gradient in the
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Figure 11. Evolution of b11 in elliptic flows. DNS data from Blaisdell & Sharif (1996).

rotating frame by

∂Ui

∂xj
=

 0 S 0
0 0 0
0 0 0

 . (69)

The turbulence field is initially isotropic. Three cases of the non-dimensional rota-
tion rate, Ω/S = 0.25, 0.5,−0.5 are considered. The initial mean-flow to turbulence
timescale ratio for all three cases is ε0/SK0 = 0.296.

The strain and rotation rate tensors corresponding this flow are

Sij = 1
2
S

 0 1 0
1 0 0
0 0 0

 , Wij = 1
2
S

(
1− 2

Ω

S

) 0 1 0
−1 0 0
0 0 0

 . (70)

For determining the modification to C4 we need

η1

1− η1

=
1

(1− 2Ω/S)2
. (71)

The comparison of the kinetic energy evolution is given in figure 13(a) for Ω/S =
0.25. Similar comparisons for the other two cases are given in figures 13(b) and 13(c).
The SSG and the present model results are indistinguishable as they both predict the
data well. In fact, in the decaying case, the present model appears to be somewhat
better than the SSG model. The K–ε model calculations are insensitive to rotation
and, hence, cannot capture the stabilizing effects of frame rotation.
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Rapidly distorted flows. Rapidly distorted homogeneous shear and plane strain
flows are considered. In the homogeneous shear flow case, the models are compared
to the RDT solution for the case of SK0/ε0 = 100. The RDT solution is a good
approximation for DNS at early times, in this case for up to St = 10. The kinetic
energy growth rates are shown in figure 14. The SSG model, which is formally
valid only near equilibrium, overpredicts the growth rate of the turbulent kinetic
energy. This is due to the fact that the near-equilibrium models exaggerate the role
of nonlinear effects in the rapid distortion limit. The new model, which is consistent
with linear theory (Crow constraint) at this limit, produces excellent agreement.

Next, the comparison is performed in a rapidly distorted plane strain case: ΓK0/ε0
= 100. The data at early times (t∗ < Γt) come from the DNS of Lee & Reynolds
(1985) and at later times from an RDT solution. The evolution of turbulent kinetic
energy is given in figure 15. Again the performance of the present model is good and
the SSG model is also quite adequate.

On the whole, the new model captures the evolution of kinetic energy very well
in rapidly distorted flows. Given its good performance in the two extreme limits of
turbulence, the rapid distortion and equilibrium states, one can be optimistic about
its performance in general non-equilibrium flows.

6.1. Inhomogeneous turbulent flows

The objective of this and most other turbulence modelling efforts is to develop
models suitable for computing complex flows of practical interest. Nearly all flows
of engineering interest are inhomogeneous. While homogeneous turbulence serves as
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an important test bed for developing and testing models, pressure–strain correlation
models must ultimately be judged by their performance in inhomogeneous flows.
Yet, there are some models that perform poorly in homogeneous turbulence but,
remarkably, well in some inhomogeneous flows. This good performance in complex
flows (while failing in simple ones) is usually attributable to cancellation of errors,
rather than any inherent merit of the model. So it is important that a turbulence
model perform well in simple as well as complex flows. We have already established
that the new model performs very well in homogeneous turbulence. To be a use-
ful tool for computing complex inhomogeneous flows, a pressure–strain correlation
model must possess three important attributes: (i) accuracy; (ii) robustness; and (iii)
computational viability. The present model has the traditional form and requires no
more computational effort than the standard pressure–strain models. Robustness is
a very important feature. Often in practice, a robust model of limited accuracy is
preferred over an accurate less robust model. For inhomogeneous flows, Thangam,
Wang & Girimaji (1998) point out that the present model is more robust than the SSG
model. When both the models are integrated to the wall, the present model needs no
modifications whereas the SSG model requires the inclusion of (somewhat arbitrary)
damping functions. This is an important virtue for calculating internal bounded flows.
Now we will evaluate the accuracy of the present model in two inhomogeneous flows.
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Rotating channel flow. A complex inhomogeneous turbulent flow that is becoming an
important benchmark for assessing pressure–strain correlation models is the rotating
channel flow. This flow incorporates several flow features that the early pressure–strain
correlation models do not reproduce accurately. Thangam et al. (1998) calculate the
rotating channel flow using the new model and present detailed results. One sample
result is shown here. The mean flow in a rotating channel calculated using the new
pressure–strain correlation model is shown in figure 16. The asymmetry in the mean
flow is well captured by the new model. The turbulent Reynolds stresses are well
reproduced (figures not shown).

Trailing vortex calculations. Far from being of academic interest only, elliptic stream-
line flows appear in some important practical applications. The lifting surfaces (wings)
of an aircraft generate two counter-rotating vortices in its wake. An encounter be-
tween these vortices and any trailing aircraft can be quite hazardous and therefore
detailed knowledge of the vortex behaviour is very important. The evolution of these
trailing vortices in an ambient straining field is quite similar to elliptic streamline
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Figure 17. Flight measurements of circulation as a function of radial distance in a trailing vortex.
The initial profile is given by the solid line. The two sets of symbols correspond to two sets of
measurements after a lapse time of 55 s.

flow. One of the viable options for studying vortex decay in high Reynolds number
wake flow is the Reynolds-averaged Navier–Stokes approach. Previous calculations
(Zeman 1994) of the trailing vortex problem using inadequate pressure–strain cor-
relation models (Zeman & Tennekes 1975) exhibit no discernible decay of the trailing
vortex, contrary to observed data. In the absence of more sophisticated pressure–
strain correlation models, the Reynolds stress closure methodology as a whole is of
little use for studying the trailing vortex problem.

Any turbulence model incapable of predicting elliptic flows will fail in capturing the
behaviour of trailing vortex in the wake of aircrafts. The success of the present model
in elliptic flows has led to its use in the investigation of the decay mechanisms in
trailing vortices. As a first step, Wallin & Girimaji (2000) and Girimaji & Wallin (2000)
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study the two-dimensional decay mechanisms of turbulent vortices. They consider
the decay of an axisymmetric turbulent vortex under the influence of turbulent
diffusion and Rayleigh instability. This study is restricted to examining curvature
effects on turbulence; the elliptic flow instability is not considered. We now present
an important result (taken from Wallin & Girimaji 2000) in this turbulent diffusion-
dominated flow. In figure 17, a typical initial circulation (Γ ) profile of a trailing
vortex is given as a function of radius. Also given are two sets of measured profiles
(from flight experiments) after a lapse of 55 s. Circulation profiles calculated from
four different turbulence models are shown in figure 18. The K–ε model predicts an
unphysical overshoot of circulation and a far too rapid decay of the vortex core. The
LRR Reynolds stress closure model result shows an overly persistent vortex. This is
consistent with the LRR model’s general propensity to perform poorly in curved and
rotating flows. The SSG model and the present model are most consistent with the
measured data. The difference between the SSG and the present models is revealed
when dual vortex decay is considered. In this case, each vortex decays in a mean strain
field created by the presence of the other vortex. Preliminary calculations have shown
that, as expected, the SSG model fails to capture the vortex decay in a mean-strain
field correctly whereas the present model does.

Further tests of the present model in practical inhomogeneous flows are currently
underway.

7. Summary and conclusion
The objective of this article is to establish and exploit the complete realm of

applicability of the standard form of the pressure–strain correlation model. The full
potential of the standard form of the model can be realized only if the coefficients
are variable functions of the applied mean deformation and the state of turbulence.
A methodology for deriving such a model in a rational manner is outlined and
implemented. The ensuing pressure–strain model extends the applicability of the
standard (LRR) class of models to complex flows – such as vorticity-dominated
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elliptic flows and non-equilibrium flows – with minimal ad hoc modifications. The
study is performed in homogeneous turbulence with two-dimensional mean flows.
The methodology, the techniques and the model developed are expected to be useful
for three-dimensional mean flows and inhomogeneous turbulence.

The methodology is based on the premise that the extreme states of turbulence
– rapid distortion and equilibrium limits – are more amenable to mathematically
rigorous modelling since they permit special simplifications not possible at other
states. Separate pressure–strain correlation models are developed for the two extreme
states. It is not unreasonable to expect that the two models together contain much
of the physics relevant to intermediate states of turbulence. The models for the
intermediate states are then derived by suitable interpolation.

In the equilibrium state, the turbulence evolves in a self-similar manner so that
the Reynolds stress anisotropy (bij) and timescale ratio (ω = ε/SK) attain a steady
state. The causal relationship between the model’s coefficients and its equilibrium
behaviour is established by performing fixed point and bifurcation analyses. The
model coefficients are specified by requiring that the model bifurcation behaviour be
consistent with that of the physical system. The long-time behaviour of the physical
system is inferred from the DNS and linear stability results of Blaisdell & Shariff
(1996). The equilibrium model coefficients can be scalar functions of the applied mean
deformation only.

In the rapid distortion limit, the model coefficients are determined by requiring
consistency with the Crow constraint (Crow 1968). For intermediate states of turbu-
lence, the model coefficients are obtained by interpolation between the equilibrium
and rapid-distortion states:

Cα(ω) = Crd
α − (Crd

α − Ceq
α ) f(ω/ω0). (72)

In the above equation, the superscripts rd and eq indicate the coefficient values in the
rapid-distortion and equilibrium limits, ω0 is the equilibrium value of the timescale
ratio and f() is a monotonic function going from zero in the rapid distortion limit
to unity in the equilibrium state. It should be emphasized here that the values of the
coefficients suggested (equation (67)) are subject to change as our knowledge of the
equilibrium state of turbulence improves and more sophisticated one-point closure
results become available at the rapid distortion limit.

A list of scalar invariants suitable for use as interpolation parameters in inter-
mediate states of turbulence is compiled. These interpolation parameters depend on
the state of the turbulence. Exclusive dependence on the mean deformation invariants
is deemed unphysical. From the list of possible interpolation parameters, for the sake
of simplicity, we only use the timescale ratio (ω).

The new pressure–strain model, along with the SSG model, is tested against DNS,
LES and RDT data for three complex flows: the elliptic streamline flow, rotating
shear flow and rapidly distorted flow. The present model captures the growth of
kinetic energy and dissipation very well in elliptic flows, whereas the SSG model fails
to capture even the qualitative features of the data. The SSG model is well-suited for
rotating shear flows to which it is calibrated. The new model and SSG model yield
nearly identical results in rotating flows for energetic as well as decaying turbulence
cases. In rapidly distorted plane shear and strain turbulence, the new model again does
an excellent job of predicting the kinetic energy evolution. The new model simplifies
to the SSG model in strain-dominated near-equilibrium flows, thus preserving good
agreement in standard benchmark flows in which the SSG model has proved so
successful.
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In conclusion, a rational methodology for deriving a variable-coefficient pressure–
strain model is developed. The resulting model extends the applicability of the
standard model form to a wider class of complex flows. While the pressure–strain
models still have many obstacles to overcome, the present results indicate reason
for optimism. The procedure developed in this paper can also be used to develop a
variable-coefficient dissipation model equation of the standard form.
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